Technical Service Report No. 02061H Ver.2.0

Gaskamine 240

An Innovative Modified Amine

MITSUBISHI GAS CHEMICAL COMPANY, INC. HIRATSUKA RESEARCH LABORATORY -Contents-

1. Advantages of Gaskamine 240		1	
2. Properties		2	
3. Curing performance		3	
3-1. Curing properties		3	
3-2. Viscosity change after mixin	g with epoxy resin	4	
4. Properties of coating film		5	
4-1. Properties of coating film o	of room temperature condition	n 5	
4-2. Properties of coating film o	f tropical condition	6	
4-3. Property of intercoat adhese	ion of coating film	7	
5. Chemical resistance		8	
5-1. Chemical resistance of coatin	g film	8	
5-2. Chemical resistance of cast sl	neet	9	
6. Adhesive properties of steel-to-	steel or mortar-to-mortar	13	3
7. Testing methods		15	5

1. Advantages of Gaskamine 240

Gaskamine 240 is a reaction product made from meta-xylenediamine (MXDA) and styrene, produced by MGC's patented technology.

Gaskamine 240 is an innovative modified amine, and has a variety of advantages as an epoxy hardener.

1. Low Viscosity

- \rightarrow Potential uses
 - Non-solvent or High-solid paints
 - Floor coatings with good workability
 - Adhesives with good workability

2. Long Pot Life and Fast Drying Performance

- To apply in warm atmosphere
- 3. Excellent Appearance and Intercoat adhesion (as a coating film)
 - To apply warm and tropical condition
 - Paints with recoatability

4. Good Chemical Resistance (as a coating film and a cast sheet)

- \rightarrow Potential uses
 - Coatings and linings requiring good chemical resistance

5. High Bond Strength

- \rightarrow Potential uses
 - Adhesives of steel-to-steel or mortar-to-mortar

2. Properties

Advantage: Lower viscosity than IPDA adduct.

		G-240	IPDA adduct	Jeffamine D-230
Properties				
Color	(Gardner)	< 1	1	<1
Viscosity	$(mPa \cdot s/25^{\circ}C)$	66	2870	9
Amine value		403	514	464
AHEW		103	58	60

Table 1.Typical properties of Gaskamine 240

IPDA adduct: IPDA / DGEBA = 8 / 1 moles adduct

DGEBA: Bis-A epoxy resin (EEW=186)

Jeffamine D-230: polyoxypropylenediamine

3. Curing performance

3-1. Curing properties

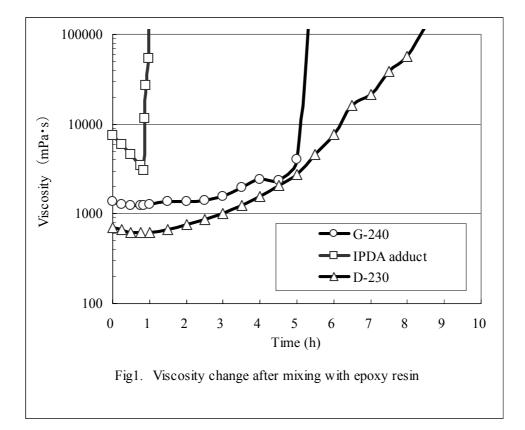
Advantage: Longer pot life than IPDA adduct. Shorter drying time than Jeffamine D-230.

Table 2. Curing	5 properties 0	I Gaskallille 240	i		
Hardener		G-240	IPDA adduct	Jeffamine D-230	
Formulation					
DGEBA	(g)	100	100	100	
Hardener	(g)	55	31	32	
Curing condition		23°C (50% RH)			
Pot life ^{*1}					
Time	(min)	340	72	521	
Exotherm temp.	(°C)	151	197	80	
RCI drying time	(hr: min)				
Set-to-touch		4:15	2:45	9:30	
Dust free		7:30	4:15	15:30	
Dry through		16:45	>24:00	21:30	

 Table 2.
 Curing properties of Gaskamine 240

DGEBA: Bis-A epoxy resin (EEW=186) (Epikote 828; Japan Epoxy Resins Co., Ltd.)

*1: 300g in cup


3-2. Viscosity change after mixing with epoxy resin

Hardener	G-240	IPDA adduct	Jeffamine D-230
Formulation (g)			
DGEBA	100	100	100
Hardener	55	31	32
Curing condition	23°C		
Initial viscosity of mixture (mPa·s)	1370	7460	712

Table 3. Initial viscosity of mixture

DGEBA: Bis-A epoxy resin (EEW=186) (Epikote 828; Japan Epoxy Resins Co., Ltd.)

*1: 300g in cup

4. Properties of coating film

4-1. Properties of coating film under room temperature condition

Advantage:Excellent appearance (gloss, clarity)Fast drying performanceExcellent water spotting resistance

Hardener	G-240	IPDA adduct	Jeffamine D-230
Formulation			
DGEBA (g)	100	100	100
Hardener (g)	55	31	32
Curing condition		23°C (50% RH)	
Appearance (7 days)			
Gloss/ Clarity	Ex/ Ex	Ex/ Ex	Ex/ Ex
Dryness			
1 day/ 4 days/ 7 days	Ex/Ex/Ex	Ex/ Ex/ Ex	Ex/ Ex/ Ex
Water spotting resistance			
2 hr/ 4 hr/ 6 hr/ 8 hr	P/ P/ P/ G	P/ P/ P/ P	P/ P/ P/ P
16 hr/ 1 day/ 4 days/ 7 days	Ex / Ex / Ex / Ex	G/ Ex/ Ex/ Ex	P/ F/ Ex/ Ex

Table /	Properties	of coating	film cured	with	Gaskamine 240
Table 4.	Properties	of coating	tiinii cuiea	with	Gaskannine 240

Appearance:	evaluated visually	
	Ex: Excellent	G: Good
	F: Fair	P: Poor
Dryness:	evaluated with finger	
	Ex: Dry	G: Slightly sticky
	F: Sticky	P: Severe sticky

Water spotting resistance:

After curing the coating film at 23°C for 2, 4, 6, 8, 16 hours, 1 day, 4 days and 7 days, water with 10 mm in diameter was placed on the coating film and covered by glass cup. After 24 hours, water on the coating film was wiped up and the condition of the coating film was evaluated visually.

Ex: No visual changes G: Slightly lower gloss or clarity

F: Slight surface whitening P: Whitening

4-2. Properties of coating film under tropical condition

Advantage: Excellent appearance (gloss, clarity, leveling) under tropical condition. Fast drying performance under tropical condition.

Table 5. Properties of coating film	under tropical conditio		
Hardener	G-240	IPDA adduct	Jeffamine D-230
Formulation (g)			
DGEBA	100	100	100
Hardener	55	31	32
Curing condition	35°C (90% RH)		
Appearance			
Gloss/ Clarity/ Leveling	Ex/Ex/Ex	P/ F/ F	P / P/ P
Dryness			
(1day/ 4days/ 7days)	Ex/Ex/Ex	Ex/ Ex/ Ex	P / P/ P

Table 5. Properties of coating film under tropical condition

4-3. Property of intercoat adhesion of coating film

Table 6. Property of intercoat adhesion of coating film					
Hardener		G-240			
Formulation	(g)				
DGEBA		80			
SR-16H	20				
Hardener		57			
Curing condition		23°C (50% RH)			
Intercoat adhesion					
Substrate/Undercoat	(/ 25)	25*			
Undercoat/Topcoat	(/ 25)	25*			

Advantage: Excellent intercoat adhesion.

SR-16H: 1,6-hexanediol diglycidyl ether (EEW=158) (Sakamoto Yakuhin Kogyo Co., Ltd.) *: the number of the pieces left

Curing: 7 days / 23°C (50%RH) for undercoat and more 7 days / 23°C (50%RH) for topcoat.

Method: Coating film was divided into 25 pieces(2mm×2mm square) on the plate by razor blade.
Adhesive tape was applied on the film and then peeled off twice.
Count the number of the pieces left on the plate.

5. Chemical resistance

5-1 Chemical resistance of coating film

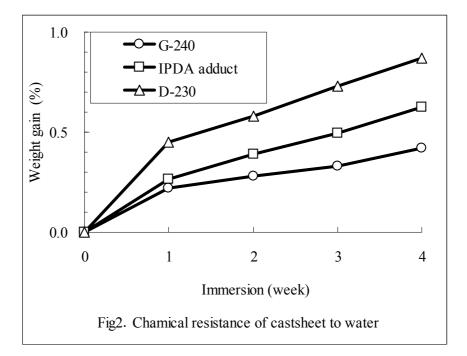
Advantage: Better chemical resistance than IPDA adduct and Jeffamine D-230.

	U		
Hardener	G-240	IPDA adduct	Jeffamine D-230
Formulation			
DGEBA (g)	100	100	100
Hardener (g)	55	31	32
Curing condition		7 days/ 23°C (50% RH)	
Chemical resistance (1w/4w)			
10wt% NaOH (aq.)	Ex / G	G / F3	Ex / G
10wt% H ₂ SO ₄ (aq.)	\mathbf{G} / \mathbf{G}	G / P3	P3 / P3
Water	Ex / Ex	Ex / G	Ex / 8M*
Gasoline*	Ex / G	G / G	Ex / G
Gas oil	Ex / G	Ex / G	Ex / G
Ethylene glycol	Ex / G	P3 / P3	Ex / G
Salt spray 5wt% NaCl	Ex / G	F2 / F2	Ex / Ex

 Table 7.
 Chemical resistance of coating film cured with Gaskamine 240

* ··· ASTM Reference Fuel A (ASTM Test Method D 471 ; Isooctane 100%)

Chemical resistance: evaluated visually

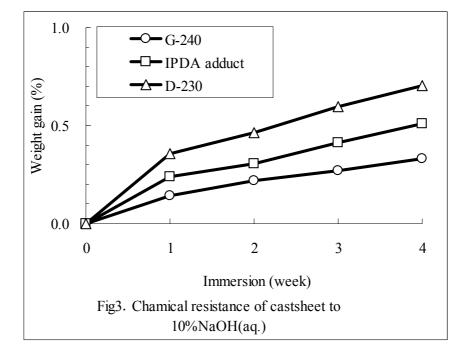
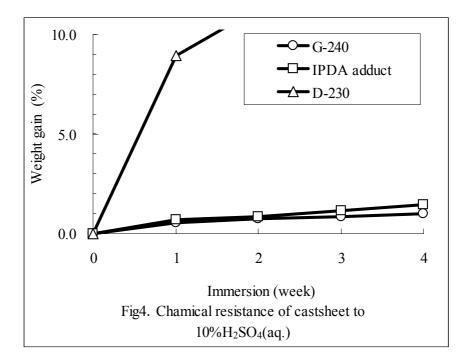
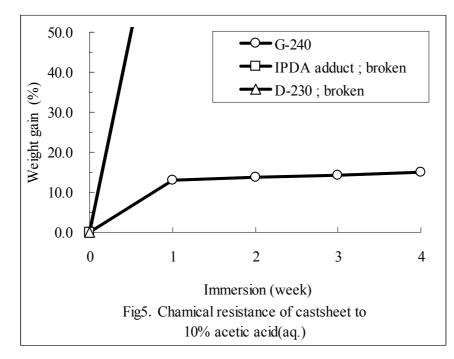
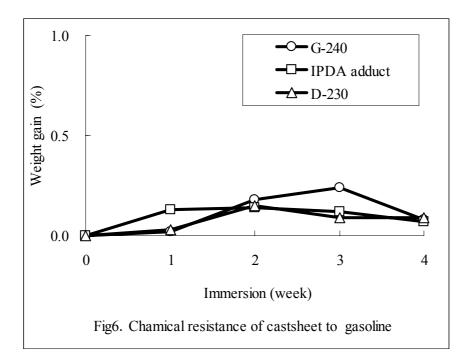

Ex: Excellent (No visual changes) G: Good (Slightly lower gloss or clarity)
F: Fair (Slight change) P: Poor (Obvious change)
Change: 1;Whitening, 2;Black spots, 3;Peeling off, 4;Swelling, 5;Dissolution

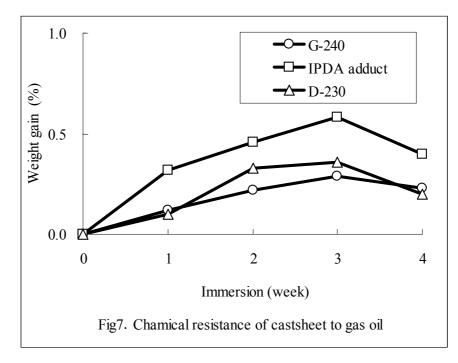
*Blister: ASTM D 714 Size: 2, 4, 6, 8 (Big \rightarrow Small)

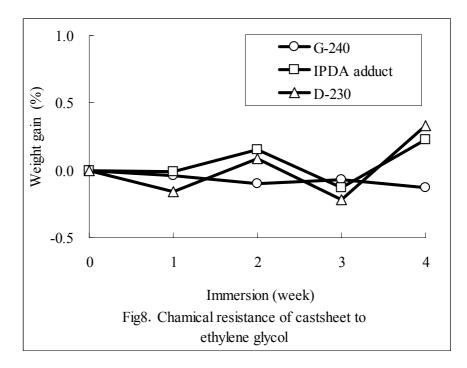
Density: F, M, MD, D (Few \rightarrow Dense)

5-2 Chemical resistance of cast sheet

Advantage: Better chemical resistance than IPDA adduct and Jeffamine D-230.


Table 8. Formulation and curing condition of cast sheet


Hardener		G-240	IPDA adduct	Jeffamine D-230
Formulation				
DGEBA	(g)	100	100	100
Hardener	(g)	55	31	32
Curing condition		7 days/ 23°C (50% RH)		

6. Adhesive properties of steel-to-steel or mortar-to-mortar

Advantage: Higher tensile shear strength of steel-to-steel adhesive than IPDA adduct. Higher bond strength of mortar-to-mortar adhesive than Jeffamine D-230, especially in wet condition.

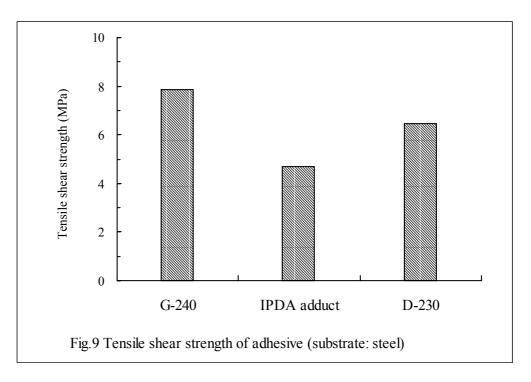


 Table 9.
 Tensile shear strength of adhesive using Gaskamine 240 (substrate: steel)

Hardener		G-240	IPDA adduct	Jeffamine D-230
Formulation				
DGEBA	(g)	80	80	80
SR-16H	(g)	20	20	20
Hardener	(g)	57	32	33
Curing condition		7 days/ 23°C (50% RH)		
Bond strength	(MPa)			
Steel-to-steel/ tensile shear stre	ength	7.9 4.7 6.5		6.5

SR-16H: 1,6-hexanediol diglycidyl ether (EEW=158) (Sakamoto Yakuhin Kogyo Co., Ltd.)

Hardener		G-240	IPDA adduct	Jeffamine D-230	
Formulation					
DGEBA	(g)	80	80	80	
SR-16H	(g)	20	20	20	
Hardener	(g)	57	32	33	
Mortar-to-mortar/ bond strength					
Curing condition (in standard)		7 days/ 23°C (50% RH)			
Type of failure		Adherend failure	Adherend failure	Adherend failure	
Bond strength	(MPa)	(11.5)	(9.3)	(9.6)	
Curing condition (in wet)		7 days/ 23°C (85% RH)			
Type of failure		Adhesive failure	Adhesive failure	Adhesive failure	
Bond strength	(MPa)	10.1	9.2	3.1	

Table 10. Bond strength of adhesive using Gaskamine 240 (substrate: mortar)

SR-16H: 1,6-hexanediol diglycidyl ether (EEW=158) (Sakamoto Yakuhin Kogyo Co., Ltd.)

7. Testing method

7-1 Coating condition and curing condition

Epoxy resin: DGEBA (Bis-A epoxy resin)(EEW=186) (Epikote 828; Japan Epoxy Resins Co., Ltd.)

Formulation: Stoichiometric amount based on active hydrogen equivalent weight.

Coating: 200µm doctor blade, on cold rolled steel (70 x 150 x 0.8 mm) sanded by #240 emery paper.

Curing: 7 days / 23°C (50%RH)

7-2 Testing method and evaluation

(1) Pot life

Time to the peak exothermic temperature $(300g, 23^{\circ}C)$

(2) RCI drying time

Coating 76µm initial thickness on glass plate $(25 \times 300 \times 2 \text{ mm})$ with an applicator. The time to ST, DF and DT is measured.

- ST: Set-to-touch
- DF: Dust free
- DT: Dry through
- 0:00 : Indicate hours and minutes

(3) Changes in viscosity with time for epoxy resin/amine systems

Epoxy resin: DGEBA (Bis-A epoxy resin)(EEW=186) (Epikote 828; Japan Epoxy Resins Co., Ltd.)

Formulation: Stoichiometric amount based on active hydrogen equivalent weight.

(4) Appearance

Gloss and clarity are evaluated visually.

Ex:	Excellent	G:	Good
F:	Fair	P:	Poor

Dryness is evaluated with the finger.

Ex: Dryness	G: Slight stickiness	

- F: Stickiness P: Severe stickiness
- (5) Water spotting resistance:

After curing the coating film at 23°C for 2, 4, 6, 8, 16 hours, 1 day, 4 days and 7 days, water with 10 mm in diameter was placed on the coating film and covered by glass cup. After 24 hours, water on the coating film was wiped up and the condition of the coating film was evaluated visually.

Ex: Excellent No visual change

G: Good Slightly lower gloss or clarity

- F: Fair Slight surface whitening
- P: Poor Whitening

(6) Properties of intercoat adhesion of coating film

Epoxy resin: DGEBA (EEW=186) (Japan Epoxy Resins Co., Ltd.)

SR-16H (EEW=158) (Sakamoto Yakuhin Kogyo Co., Ltd.)

DGEBA : SR-16H = 80:20 Blend

Formulation: Stoichiometric amount based on active hydrogen equivalent weight.

- Curing: 7 days / 23°C (50%RH) for undercoat and more 7 days / 23°C (50%RH) for topcoat.
- Coating: 150 μ m doctor blade for undercoat and 150 μ m doctor blade for topcoat, on cold rolled steel (70 x 150 x 0.8 mm) sanded by #240 emery paper.
- Method: Coating film was divided into 25 pieces(2mm×2mm square) on the plate by razor blade.

Adhesive tape was applied on the film and then peeled off twice. Count the number of the pieces left on the plate.

(7) Chemical resistance of coating film:

Immersion: 4 weeks / 23°C

- Salt spray: 4 weeks / 35°C
 - Test: evaluated visually

Ex: Excellent (No visual changes) G: Good (Slightly lower gloss or clarity)

F: Fair (Slight change) P: Poor (Obvious change)

Change: 1; Whitening, 2; Black spots, 3; Peeling off, 4; Swelling, 5; Dissolution Blister: ASTM D 714

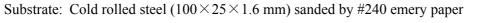
Size: 2, 4, 6, 8 (Big \rightarrow Small) Density: F, M, MD, D (Few \rightarrow Dense)

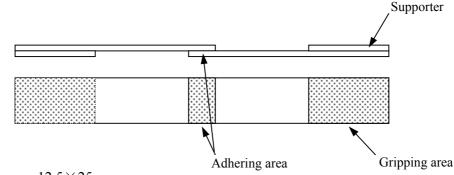
(8) Chemical resistance of cast sheet

Formulation: Stoichiometric amount based on active hydrogen equivalent weight.

Formulated epoxy resin was degassed enough, and poured into the cast $(50 \times 50 \times 3 \text{ mm})$ and cured.

Curing: 7 days / 23°C (50% RH)


Immersion: 4 weeks / 23°C


7-3 Bond strength

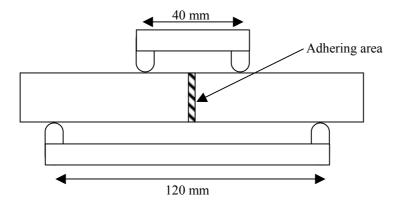
Epoxy resin: DGEBA (EEW=186) (Japan Epoxy Resins Co., Ltd.) SR-16H (EEW=158) (Sakamoto Yakuhin Kogyo Co., Ltd.) DGEBA : SR-16H = 80:20 Blend

Formulation: Stoichiometric amount based on active hydrogen equivalent weight.

(1) Steel-to-steel bond strength, by tensile shear strength

Adhering area: 12.5×25 mm

Curing: 7days / 23°C (50% RH)


Test: Instron type tester Cross head speed: 2 mm / min

(2) Mortar-to-mortar bond strength

Substrate: Mortar block ($40 \times 40 \times 80$ mm) was made from 1 part portland cement and 3 parts sand and 0.50 part water, and cured at 20°C (90 % RH) for 24 hours and in water at 20°C for 27 days.

Adhering area: 40×40 mm

Thickness of glue line: 1 mm

Curing: standard condition:

7 days / 23°C (50% RH)

: wet condition:

Before adhering, mortar blocks are immersed in water for 1 day. Cured at 20°C (85% RH) for 7 days.

Test: Instron type tester Cross head speed: 1 mm / min

Updated

Date	Version	Remarks
2002/06	Ver.1.0	TSR02061H
2002/11	Ver.1.1	Water spotting resistance of 2,4,6,8hr.
2003/02	Ver.2.0	Changes in viscosity with time for epoxy resin/amine systems.
		Properties of coating film under tropical condition.
		Properties of intercoat adhesion of coating film.
		Chemical resistance of coating film and cast sheet(gasoline, gas oil, ethylene
		glycol).

Technical information contained herein is furnished without charge or obligation, and is given and accepted at recipient's sole risk. Because conditions of use may vary and are beyond our control, MGC makes no representation about, and is not responsible or liable for accuracy or reliability of data, not for toxicological effects or industrial Hygiene requirements associated with particular uses of any product described herein. Nothing contained in this bulletin shall be considered a recommendation for any use that may infringe patent rights or an endorsement of any particular material not supplied by MGC. Any properties or applications listed in this bulletin are provide way create, modify, amend, or enlarge any specification or warranty.